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Deformation and failure in cellular materials
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Thomas M. Breunig
University of California San Francisco, San Francisco, California 94143
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An isotropic, three-dimensional, lattice-spring model is proposed to describe deformation and failure in
heterogeneous materials. Young’s moduli of samples of trabecular bone have been calculated, using images of
the microstructure obtained from x-ray microtomography. An analysis of the stress distribution indicates that
trabecular bone will most likely fail due to local tensile stresses, even when the macroscopic load is compres-
sive. In the samples studied, there does not seem to be a homogenization length scale beyond which the
material can be described by an effective medium theory.@S1063-651X~97!09703-1#

PACS number~s!: 87.45.2k, 62.20.Dc, 81.40.Jj, 82.20.Wt
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Trabecular bone is mineralized tissue with an open-
structure~see Fig. 1! that lies inside the cortical shell. It i
known that osteoporosis is strongly correlated with the l
of trabecular bone mass@1#, but effective treatment require
an understanding of how the increased fracture risk in
teoporotic patients is related to changes in bone architec
and to what extent it may be due to changes in mechan
properties of the bone tissue itself. Experimental meas
ments of the elastic moduli of trabecular bone show a var
of density scalings, depending on the anatomical loca
and species from which the sample is taken@1#. Thus the
mechanical properties of trabecular bone do not follow
simple scaling laws of manyregular cellular structures@2#,
nor do they follow the typical scaling laws of random ne
works @3#. Cellular structures, even irregular ones, are mu
more highly ordered than random networks; for instance,
becular bone is mechanically stable even though it is 8
90 % pore space. Separating the effects of architecture
tissue properties on bone biomechanics requires a det
knowledge of the distribution of stress inindividual samples
where the structure can be accurately determined, for
stance by x-ray microtomography@4#. In this paper we de-
scribe a numerical simulation technique that can be use
determine the stress and strain fields in complex hetero
neous materials, assuming that on themicroscopic scale
~typically of the order of 1mm) deformation can be de
scribed by the equations of isotropic linear elasticity. Giv
the stress field throughout the sample and a local failure
teria, the failure process can be determined by succes
relaxation of the displacement field. The algorithm is bas
on a lattice model of the material; the nodes are connecte
springs whose force constants are determined by the el
stiffness of each volume element. It was found by analo
with lattice-gas models@5# that a locally isotropic spring
network can be constructed by a suitable mixture of t
different sets of connections. An averaging procedure for
force constants at material interfaces is described which
stantially improves the convergence of the model.

Consider a cubic lattice, interconnected by springs a
described by the Hamiltonian
551063-651X/97/55~3!/3271~5!/$10.00
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ui is the diplacement of thei th node, andxi j5xi2xj is the
vector connecting nodesi and j in the undistorted lattice.
The force constantk sets the frequency range of the sprin
network and the coupling constantsgi j are chosen to ensur
local isotropy. Although a cubic lattice has insufficient sym
metry to ensure elastic isotropy@5#, there are simple model
that can be used, in conjunction with appropriate choices
coupling parametersgi j , to obtain isotropic elastic equa
tions. The simplest model which is both isotropic and m
chanically stable at the element level has 18 different c
nections, corresponding to the@100# and@110# directions of a
cubic lattice; isotropy requires thatgi j51 for both@100# and
@110# orientations of the vectorxi j . Macroscopic field equa-
tions can be obtained by a Taylor expansion of the displa
ments; the resulting elastodynamic equations are correc
second order in the lattice spacing, i.e.,

r] t
2u5

k

a
@2¹~¹•u!1¹2u1O~a2¹4u!#. ~2!

For central forces the Lame´ constants are equal, and Poi
son’s ratio is therefore14.

Samples of trabecular bone were imaged in an x-ray
mographic microscope@4#, with a resolution of 20mm ~see
Fig. 1!. A digitized image of each specimen was used
construct a three-dimensional array of cubic volume e
ments, typically about 30mm on a side; each volume ele
ment was either occupied, signifying bone, or unoccupi
signifying vacuum. In this work it was assumed that the t
sue properties are spatially invariant, and that all the spa
inhomogeneity comes from variations in architecture. In
der to set up a spring network for a particular trabecu
microstructure, we imagine that eachoccupiedvolume ele-
ment ~or voxel! of the tomographic image~see Fig. 1! is
represented by one or more elastic elements in the mod
cross section through a typical strut contains 10–100 vox
Nodes are placed at the vertexes of each elastic elemen
3271 © 1997 The American Physical Society
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FIG. 1. ~Color! X-ray tomographic image of a sample of trabecular bone at a resolution of 20mm; the sample is about 7 mm on a sid
or about 350 voxels. The structure is largely composed of interconnected struts and plates; these are typically about 100mm thick. The
proximal-distal~longitudinal! direction corresponds to the vertical direction in the figure, the medial-lateral axis runs from front to bac
the dorsal-palmer axis runs right to left. The sample porosity is about 86%. Figures 1 and 3 may be viewed at http://www-ep.es
www-ep/esd/shockphy/bonemech.html.
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interconnected by springs; this spring network fills 10–15
of the total volume. Each elastic element is assumed to c
tribute to the force constant of the springs associated w
that element. Thus elementi contributes14k i to each of the
12 surrounding@100# springs, wherek i characterizes the
bulk stiffness of the material in elementi . The total force
constant of a@100# spring is made up of contributions from
up to four surrounding elements. In the interior of the so
the spring constant will be that of the bulk materialk, but
near an interface it will be weighted by the material prop
ties of the adjoining elements, takingk i to be zero for unoc-
cupied voxels. Similarly, an element contributes1

2k i to each
of its 12 @110# springs, which are shared between two neig
boring volume elements. The resulting spring network is m
n-
th

-

-
-

chanically stable for any architecture, as long as the struc
is a continuous, face-connected cluster. Although this mo
is more complex to set up than a simple spring model@3#, it
leads to a much more rapid convergence as the numbe
voxels is increased. For example, consider a uniform
with a square cross section; if a spring model with a sin
force constant is used, then it is found that the calcula
Young’s modulus deviates from continuum theory by ter
proportional to 1/h, whereh is the number of voxels on a
side of the square. However, weakening the surface spri
as described above, gives anh-independent Young’s modu
lus, equal to the continuum result for the same bulk fo
constant.

Spring network models typically incorporate failure b
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55 3273DEFORMATION AND FAILURE IN CELLULAR MATERIALS
breaking individual springs in response to large local ext
sions @3#. While this is physically appealing, experiment
failure measurements are usually described in terms of p
cipal stress or strain energy, which are only indirectly rela
to the stretching of individual bonds. We propose to mo
failure at the element level, rather than at the level of
individual springs. First the strain in each element is cal
lated, using an expression for the symmetric strain ten
es appropriate to cubic elements,

es5
1

4a2(i51

8

~xiui1uixi !; ~3!

herexi is the vector from the center of the element to t
vertex i . It can then be determined by continuum elastic
whether or not the element has failed, under the chosen
ure criterion. If an element is found to have failed, its co
tributions to the surrounding spring constants are remo
and the displacements are again relaxed.

Trabecular bone is structurally and elastically anisotro
~see Fig. 1!. In the distal radius the preferred direction lie
along the main axis of the forearm, the longitudin
~proximal-distal! direction. The trabeculae are randomly o
ented about the longitudinal axis; thus the bone is roug
isotropic in the two transverse directions~medial-lateral and
dorsal-palmer!. In Table I we report calculated elastic co
stants for two samples of human trabecular bone. Const
displacement boundary conditions were used along the c
pression direction, with the lateral displacements on
compressional surfaces constrained to zero; the displ
ments on the unloaded surfaces were free. These boun
conditions are thought to represent most realistically the
perimental situation, where the sample is firmly gripped
tween the load platens. The displacement field was rela
using a conjugate-gradient algorithm, until the change in
tential energy was less than one part in 1012. The data in
Table I were obtained with cubic elastic elements that w
30–40mm on a side. Some of the calculations were repea
with twice as many elements in each dimension; about a
variation in the moduli was found.

The calculated Young’s moduli for these samples ran
from 1% to 5% of the Young’s modulus for the bulk mater
~Table I!. Since experimental measurements of the tis
modulus are not yet available, we compare ratios of ela
moduli in different directions. The two transvers
longitudinal anisotropiesb2 andb3 are compared with ex

TABLE I. Elastic constants of two samples of human trabecu
bone. The compressional moduli for uniaxial loadingsEi are nor-
malized by Young’s modulus for the bulk materialE0. The elastic
anisotropiesb25E2 /E1 andb35E3 /E1 are also shown, togethe
with experimental data from Ref.@6#. By combining experimenta
and simulation data for longitudinal loading, an estimate of
Young’s modulus of the tissue material,E0, is obtained.

Sample PorosityE1 /E0 E2 /E0 E3 /E0 b2 b3 E0 ~GPa!

1 87% 0.0374 0.0182 0.0136 0.49 0.36
Expt. 0.47 0.73 12
2 86% 0.0513 0.0171 0.0165 0.33 0.32
Expt. 0.37 0.14 12
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perimental measurements@6# on the same samples. The r
sults for the first anisotropy~medial-lateral–proximal-distal!,
b2, are in good agreement with experimental data. Howe
the agreement between simulation and experiment for
second anisotropy~dorsal-palmer–proximal-distal!, b3, is
poor; we think this is due to sample damage during the
perimental measurements. Since the dorsal-palmer mod
was always measured last, trabeculae near the surfaces
have been broken during the repeated loading and unloa
cycles that were used for the stress-strain measuremen
the other directions.

A rough estimate of the tissue modulus has been mad
combining the experimental measurement of the longitud
~proximal-distal! modulus,E1 @6#, with the simulation data
for the ratio of longitudinal modulus to tissue modulu
E1 /E0. The longitudinal modulus was used because we
lieve this is the most reliable experimental measurement.
estimate that the tissue modulus for both samples is abou
GPa, at the upper end of the published range of values
trabecular bone~1–15 GPa! @1#.

Histograms of the largest principal stress are shown
Fig. 2, for longitudinal and transverse loadings. It can
seen that the largest stress on an element can be either
pressive (s/savg.0) or tensile (s/savg,0). Even though
the samples are macroscopically loaded in compress
there are a substantial number of elements ('25%) that are
in tension. Failure is expected to begin at the elements w
the highest tensile stresses. This is in agreement with exp
mental data@7#, which indicate that trabecular bone fails b
breaking struts~tensile failure! rather than by plastic yielding
~shear failure!. There is a pronounced difference in th
widths of the two distributions; under transverse loading
sample has a larger fraction of highly stressed elements
when loaded in the longitudinal direction. This is becau
longitudinal loading deforms the main trabecular loop
whereas transverse loading tends to bend the more fra
connections between trabeculae. Thus the bone is m
likely to fail under transverse loading than principal-ax
loading.

Three-dimensional images of the largest principal str
are shown in Fig. 3, for longitudinal and transverse loadin
In each image, the elements whose stress exceeds a p

r

e

FIG. 2. Stress histograms for sample 2. The probability dis
bution of the largest principal stress is shown for longitudinal a
transverse compressive loadings. The stresses are normalized b
mean stress in the sample; the area under each curve is unity.
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55 3275DEFORMATION AND FAILURE IN CELLULAR MATERIALS
value are illuminated; images are shown at three differ
stress levels, corresponding to moderate compression,
compression, and high tension, respectively. At the low
stress level~upper-left and lower-left images! the load paths
clearly outline the trabecular structure, as can be seen
comparison with Fig. 1. At higher stress levels~center im-
ages!, the load paths are fewer and are distributed inhom
geneously; the orientations of the load paths are readily id
tifiable. It has been assumed, based on two-dimensi
observations of the architecture@8#, that trabecular bone is
homogeneous on length scales longer than a few trabec
spans. Our results show that the stress is not homogen
until much larger length scales, if at all. Tensile stres
~upper-right and lower-right images! are typically located on
the outside of curved struts, as can be seen by compa
these images with the structure shown in Fig. 1. There
concentration of tension near the center of the sample, w
thicker trabeculae begin to distribute the load more u
formly. These images show how relatively minor variatio
in architecture can have a substantial impact on the st
distribution in irregular cellular structures; the location
regions of stress concentration vary considerably with lo
direction.
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In this paper we have described an approach to solv
problems involving deformation of complex, cellular solid
we found that it was feasible to simulate structures conta
ing up to 107 nodes on a workstation. By a careful choice
spring constants, a more quantitative connection to c
tinuum elasticity is possible than with the simpler spri
models typically used to analyze random networks@3#.
Analysis of the stress distribution in samples of trabecu
bone shows that tensile failure is the likely mode of failu
even when the samples are loaded in compression. Our
culations also indicate that the stress field is not homo
neous until rather large length scales, if at all; this sugge
that effective medium theories, which ignore the local mic
structure, will be unable to describe failure in trabecu
bone.
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