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Deformation and failure in cellular materials
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An isotropic, three-dimensional, lattice-spring model is proposed to describe deformation and failure in
heterogeneous materials. Young’s moduli of samples of trabecular bone have been calculated, using images of
the microstructure obtained from x-ray microtomography. An analysis of the stress distribution indicates that
trabecular bone will most likely fail due to local tensile stresses, even when the macroscopic load is compres-
sive. In the samples studied, there does not seem to be a homogenization length scale beyond which the
material can be described by an effective medium thd@$063-651X97)09703-1

PACS numbg(s): 87.45-k, 62.20.Dc, 81.40.Jj, 82.20.Wt

Trabecular bone is mineralized tissue with an open-cell 2k R
structure(see Fig. 1 that lies inside the cortical shell. It is H=2> om EZ gij[(ui—up)-x;1% (1)
known that osteoporosis is strongly correlated with the loss ! =
of trabecular bone mag¢&], but effective treatment requires
an understanding of how the increased fracture risk in o
teoporotic patients is related to changes in bone architectur

and to what extent it may be due to changes in mechanic%l

properties of the _bone tls_sue itself. Experimental measurgy 4| isotropy. Although a cubic lattice has insufficient sym-
ments of the elastic moduli of trabecular bone show a Va”etYnetry to ensure elastic isotropg], there are simple models

of density scalings, depending on the anatomical locatiogna¢ can be used, in conjunction with appropriate choices of
and species from which the sample is taf@h Thus the .o pjing parameterg; , to obtain isotropic elastic equa-

mechanical properties of trabecular bone do not follow thejons. The simplest model which is both isotropic and me-
simple scaling laws of mangegular cellular structure$2],  chanically stable at the element level has 18 different con-
nor do they follow the typical scaling laws of random net- nections, corresponding to the00] and[110] directions of a
works[3]. Cellular structures, even irregular ones, are mucheubic lattice; isotropy requires thgt;= 1 for both[100] and
more highly ordered than random networks; for instance, traf110] orientations of the vectox;; . Macroscopic field equa-
becular bone is mechanically stable even though it is 85-tions can be obtained by a Taylor expansion of the displace-
90 % pore space. Separating the effects of architecture antents; the resulting elastodynamic equations are correct to
tissue properties on bone biomechanics requires a detailestcond order in the lattice spacing, i.e.,

knowledge of the distribution of stressimdividual samples
where the structure can be accurately determined, for in-
stance by x-ray microtomography]. In this paper we de-
scribe a numerical simulation technique that can be used to
determine the stress and strain fields in CompleX heterong-or central forces the Lahmnstants are equaL and Pois-
neous materials, assuming that on timcroscopicscale  son’s ratio is thereforg.

(typically of the order of 1um) deformation can be de- Samples of trabecular bone were imaged in an x-ray to-
scribed by the equations of isotropic linear elasticity. Givenmographic microscopgs], with a resolution of 2Qum (see

the stress field throughout the sample and a local failure criFig. 1). A digitized image of each specimen was used to
teria, the failure process can be determined by successivenstruct a three-dimensional array of cubic volume ele-
relaxation of the displacement field. The algorithm is basednents, typically about 3@tm on a side; each volume ele-
on a lattice model of the material; the nodes are connected byent was either occupied, signifying bone, or unoccupied,
springs whose force constants are determined by the elastignifying vacuum. In this work it was assumed that the tis-
stiffness of each volume element. It was found by analogysue properties are spatially invariant, and that all the spatial
with lattice-gas model$5] that a locally isotropic spring inhomogeneity comes from variations in architecture. In or-
network can be constructed by a suitable mixture of twoder to set up a spring network for a particular trabecular
different sets of connections. An averaging procedure for thenicrostructure, we imagine that eaokicupiedvolume ele-
force constants at material interfaces is described which sulment (or voxe) of the tomographic imagésee Fig. 1 is

Ui is the diplacement of thith node, andk;; =x;—x; is the
vector connecting nodeisand j in the undistorted lattice.
he force constank sets the frequency range of the spring
etwork and the coupling constargg are chosen to ensure

pﬁtzu=g[ZV(V-u)JrVZquO(aZV“u)]. @)

stantially improves the convergence of the model. represented by one or more elastic elements in the model; a
Consider a cubic lattice, interconnected by springs andross section through a typical strut contains 10—100 voxels.
described by the Hamiltonian Nodes are placed at the vertexes of each elastic element and
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FIG. 1. (Color) X-ray tomographic image of a sample of trabecular bone at a resolution @fi2Ghe sample is about 7 mm on a side,
or about 350 voxels. The structure is largely composed of interconnected struts and plates; these are typically abouthid0 The
proximal-distal(longitudina) direction corresponds to the vertical direction in the figure, the medial-lateral axis runs from front to back, and
the dorsal-palmer axis runs right to left. The sample porosity is about 86%. Figures 1 and 3 may be viewed at http://www-ep.es.linl.gov/
www-ep/esd/shockphy/bonemech.html.

interconnected by springs; this spring network fills 10—15 %chanically stable for any architecture, as long as the structure
of the total volume. Each elastic element is assumed to coris a continuous, face-connected cluster. Although this model
tribute to the force constant of the springs associated witlis more complex to set up than a simple spring méaglit

that element. Thus elementcontributesi«; to each of the leads to a much more rapid convergence as the number of
12 surrounding[100] springs, wherek; characterizes the voxels is increased. For example, consider a uniform bar
bulk stiffness of the material in element The total force with a square cross section; if a spring model with a single
constant of §100] spring is made up of contributions from force constant is used, then it is found that the calculated
up to four surrounding elements. In the interior of the solidYoung’s modulus deviates from continuum theory by terms
the spring constant will be that of the bulk materiglbut  proportional to 14, whereh is the number of voxels on a
near an interface it will be weighted by the material proper-side of the square. However, weakening the surface springs,
ties of the adjoining elements, taking to be zero for unoc- as described above, gives hrindependent Young's modu-
cupied voxels. Similarly, an element contributes to each lus, equal to the continuum result for the same bulk force
of its 12[110] springs, which are shared between two neigh-constant.

boring volume elements. The resulting spring network is me- Spring network models typically incorporate failure by
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TABLE I. Elastic constants of two samples of human trabecular
bone. The compressional moduli for uniaxial loadirigjsare nor-
malized by Young’s modulus for the bulk materia}. The elastic longitudinal |
anisotropiesB,=E,/E;, and B;=E3/E, are also shown, together | ... transverse |
with experimental data from Ref6]. By combining experimental 0.10r :
and simulation data for longitudinal loading, an estimate of the =
Young's modulus of the tissue materi&g, is obtained. a.

015 T T T

0.051
Sample PorosityE,/E, E,/Ey E3/Eq B, B3 Ey (GPa

1 87% 0.0374 0.0182 0.0136 0.49 0.36

Expt. 0.47 073 12 0.00
2 86% 0.0513 0.0171 0.0165 0.33 0.32 -20 -10 0 10 20
Expt. 037 014 12 T/ O avg

breaking individual springs in response to large local exten- FIG. 2. Stress histograms for sample 2. The probability distri-
sions[3]. While this is physically appealing, experimental bution of the largest principal stress is shown for longitudinal and
failure measurements are usually described ’in terms of prir.|t_ransverse compressive loadings. The stresses are normalized by the
cipal stress or strain energy, which are only indirectly related"€a" Stress in the sample; the area under each curve is unity.

to the Stretching of individual bonds. We propose to modeberimentaj measuremerﬂﬁ] on the same samp'esl The re-
failure at the element level, rather than at the level of thests for the first anisotropgmedial-lateral—proximal-distgl
individual springs. First the strain in each element is calcu, are in good agreement with experimental data. However
lated, using an expression for the symmetric strain t€nsohe agreement between simulation and experiment for the
€ appropriate to cubic elements, second anisotropydorsal-palmer—proximal-distal B3, is
poor; we think this is due to sample damage during the ex-

8
1 i i -
e (X U+ U ) 3) perimental measurements. Since the dorsal-palmer modulus
4%~ was always measured last, trabeculae near the surfaces may

have been broken during the repeated loading and unloading

herex; is the vector from the center of the element to thecycles that were used for the stress-strain measurements in
vertexi. It can then be determined by continuum elasticitythe other directions.
whether or not the element has failed, under the chosen fail- A rough estimate of the tissue modulus has been made by
ure criterion. If an element is found to have failed, its con-combining the experimental measurement of the longitudinal
tributions to the surrounding spring constants are removegoroximal-dista] modulus,E; [6], with the simulation data
and the displacements are again relaxed. for the ratio of longitudinal modulus to tissue modulus

Trabecular bone is structurally and elastically anisotropicg, /E,. The longitudinal modulus was used because we be-
(see Fig. 1 In the distal radius the preferred direction lies lieve this is the most reliable experimental measurement. We
along the main axis of the forearm, the longitudinal estimate that the tissue modulus for both samples is about 12
(proximal-dista) direction. The trabeculae are randomly ori- GPa, at the upper end of the published range of values for
ented about the longitudinal axis; thus the bone is roughlytrabecular bonél—-15 GPa[1].
isotropic in the two transverse directiofraedial-lateral and Histograms of the largest principal stress are shown in
dorsal-palmer In Table | we report calculated elastic con- Fig. 2, for longitudinal and transverse loadings. It can be
stants for two samples of human trabecular bone. Constangeen that the largest stress on an element can be either com-
displacement boundary conditions were used along the conpressive ¢/o,,s>0) or tensile (/0,,4<0). Even though
pression direction, with the lateral displacements on thehe samples are macroscopically loaded in compression,
compressional surfaces constrained to zero; the displacehere are a substantial number of elemenrt2%%) that are
ments on the unloaded surfaces were free. These boundairy tension. Failure is expected to begin at the elements with
conditions are thought to represent most realistically the exthe highest tensile stresses. This is in agreement with experi-
perimental situation, where the sample is firmly gripped be-mental datgd7], which indicate that trabecular bone fails by
tween the load platens. The displacement field was relaxedhreaking strutgtensile failure rather than by plastic yielding
using a conjugate-gradient algorithm, until the change in potshear failurg There is a pronounced difference in the
tential energy was less than one part in2l0'he data in  widths of the two distributions; under transverse loading the
Table | were obtained with cubic elastic elements that wergample has a larger fraction of highly stressed elements than
30—40um on a side. Some of the calculations were repeateévhen loaded in the longitudinal direction. This is because
with twice as many elements in each dimension; about a 3%ongitudinal loading deforms the main trabecular loops,
variation in the moduli was found. whereas transverse loading tends to bend the more fragile

The calculated Young’s moduli for these samples rangeonnections between trabeculae. Thus the bone is more
from 1% to 5% of the Young’s modulus for the bulk material likely to fail under transverse loading than principal-axis
(Table ). Since experimental measurements of the tissudoading.
modulus are not yet available, we compare ratios of elastic Three-dimensional images of the largest principal stress
moduli in different directions. The two transverse- are shown in Fig. 3, for longitudinal and transverse loadings.
longitudinal anisotropieg@, and B8; are compared with ex- In each image, the elements whose stress exceeds a preset
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value are illuminated; images are shown at three different In this paper we have described an approach to solving
stress levels, corresponding to moderate compression, higiroblems involving deformation of complex, cellular solids;
compression, and high tension, respectively. At the lowesive found that it was feasible to simulate structures contain-
stress levelupper-left and lower-left imaggshe load paths  ing up to 10 nodes on a workstation. By a careful choice of
Clearly outline the trabecular structure, as can be seen bypring constants, a more quantitati\/e connection to con-
comparison with Fig. 1. At higher stress levetenter im-  tinyum elasticity is possible than with the simpler spring
ages, the load pgths are fewer and are distributed ir)ho_momodds typically used to analyze random netwofld.
geneously; the orientations of the load paths are readily idensna)ysis of the stress distribution in samples of trabecular
tifiable. It has been assumed, based on two-dimensionglone shows that tensile failure is the likely mode of failure,
observations of the architectuf8], that trabecular bone is even when the samples are loaded in compression. Our cal-

homogeneous on length scales longer than a few trabecul@ lations also indicate that the stress field is not homoge-

spans. Our results show that the stress is not homogemz%eous until rather large length scales, if at all; this suggests

until muph larger Iengt_h sqales, it at aI.I. Tensile Stresse%hat effective medium theories, which ignore the local micro-
(upper-right and lower-right imaggare typically located on ructure, will be unable to describe failure in trabecular

the outside of curved struts, as can be seen by comparirg
these images with the structure shown in Fig. 1. There is one.

concentration of tension near the center of the sample, where Thijs work was supported by the the National Institutes of
thicker trabeculae begin to distribute the load more unieaith (RO1-AR43052, by the U. S. Department of Energy
formly. These images show how relatively minor variationspgffice of Basic Energy ScienceéKC040303, and by

in architecture can have a substantial impact on the stre§s;\yrence Livermore National Laboratory under Contract
distribution in irregular cellular structures; the location of W-7405-Eng-48.

regions of stress concentration vary considerably with load

direction.
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